5-chromatic Strongly Regular Graphs
نویسندگان
چکیده
In this paper, we begin the determination of all primitive strongly regular graphs with chromatic number equal to 5. Using eigenvalue techniques, we show that there are at most 43 possible parameter sets for such a graph. For each parameter set, we must decide which strongly regular graphs, if any, possessing the set are 5-chromatic. In this way, we deal completely with 34 of these parameter sets using eigenvalue techniques and computer enumerations.
منابع مشابه
On chromatic number of Latin square graphs
The chromatic number of a Latin square is the least number of partial transversals which cover its cells. This is just the chromatic number of its associated Latin square graph. Although Latin square graphs have been widely studied as strongly regular graphs, their chromatic numbers appear to be unexplored. We determine the chromatic number of a circulant Latin square, and find bounds for some ...
متن کاملNew bounds for the max-k-cut and chromatic number of a graph
We consider several semidefinite programming relaxations for the max-k-cut problem, with increasing complexity. The optimal solution of the weakest presented semidefinite programming relaxation has a closed form expression that includes the largest Laplacian eigenvalue of the graph under consideration. This is the first known eigenvalue bound for the max-k-cut when k > 2 that is applicable to a...
متن کاملSpreads in Strongly Regular Graphs
A spread of a strongly regular graph is a partition of the vertex set into cliques that meet Delsarte's bound (also called Hoffman's bound). Such spreads give rise to colorings meeting Hoffman's lower bound for the chromatic number and to certain imprimitive three-class association schemes. These correspondences lead to conditions for existence. Most examples come from spreads and fans in (part...
متن کاملChromatic numbers of 6-regular graphs on the Klein bottle
In this paper, we determine chromatic numbers of all 6-regular loopless graphs on the Klein bottle. As a consequence, it follows that every simple 6-regular graph on the Klein bottle is 5-colorable.
متن کاملOn minimal triangle-free 6-chromatic graphs
A graph with chromatic number k is called k-chromatic. Using computational methods, we show that the smallest triangle-free 6-chromatic graphs have at least 32 and at most 40 vertices. We also determine the complete set of all triangle-free 5-chromatic graphs up to 23 vertices and all triangle-free 5-chromatic graphs on 24 vertices with maximum degree at most 7. This implies that Reed’s conject...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 306 شماره
صفحات -
تاریخ انتشار 2006